Chemistry in aqueous and non-aqueous solutions

Categories of non-aqueous solvents:

Protic solvents

They contain contain hydrogen atom and connected directly to an electronegative
They are capable of hydrogen bonding atom (such as $\mathrm{O}-\mathrm{H}$ or $\mathrm{N}-\mathrm{H}$ bonds)
Example:
HF, H2SO4, MeOH, HOSO2F

Aprotic Solvents

They contain no hydrogen atoms connected directly to an electronegative atom
They are not capable of hydrogen bonding.
Example:

```
N2O4, BrF3
```


Chemistry in aqueous and non-aqueous solutions

- Acids and bases: a solvent oriented definition Self-ionizing solvent: an acid is a substance that produces the cation characteristic of the solvent,
- A base is a substance that produces the anion characteristic of the solvent.

$$
2 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left[\mathrm{H}_{3} \mathrm{O}\right]^{+}+[\mathrm{OH}]^{-}+2 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{NH}_{4}\right]^{+}+\left[\mathrm{NH}_{2}\right]^{-}
$$

Hydronium ion Hydroxide ion Ammonium ion Amide ion

Chemistry in aqueous and non-aqueous solutions

Precipitation reactions in liquid ammonia In aqueous solution:
$\mathrm{BaCl} 2(\mathrm{aq})+2 \mathrm{AgNO} 3(\mathrm{aq}) \longrightarrow 2 \mathrm{AgCl}(\mathrm{s})+\mathrm{Ba}(\mathrm{NO} 3) 2(\mathrm{aq})$
In NH3:
$\mathrm{Ba}(\mathrm{NO} 3) 2$ (solv) +2 AgCl (solv) $\longrightarrow \mathrm{BaCl} 2$ (s) +2 AgNO 3 (solv)
Solubility of AgCl is $0.29 \mathrm{~g} / 100 \mathrm{~g} \mathrm{H} 2 \mathrm{O}$ liquid NH 3 compared with $1.91 \times 10-4 \mathrm{~g}$ per 100 g H2O

In NH3:
KNO 3 (solv) +AgCl (solv) $\longrightarrow \mathrm{KCl}(\mathrm{s})+\mathrm{AgNO} 3$ (solv)
Neutralization reactions in liquid ammonia

$$
\text { Acid }+ \text { Base } \longrightarrow \text { Salt }+ \text { Ammonia }
$$

$\mathrm{NH} 4 \mathrm{Br}+\mathrm{KNH} 2 \longrightarrow \mathrm{KBr}+2 \mathrm{NH} 3$

Chemistry in aqueous and non-aqueous solutions

Solutions of s-block metals in liquid NH3

- All Group-I alkali metals and group-2 metals Ca, Sr, and Ba dissolve in liquid NH3 Dilute solutions of the metals are bright blue in color

Color is arised in the IR region due to a broad and intense absorption

$$
\mathrm{M} \longrightarrow \mathrm{M}+(\text { solv })+\mathrm{e}-\text { (solv) }
$$

> Dissolve in liquid NH3
> Dilute solutions are paramagnetic with unpaired electron
> The magnetic response corresponds to that of one free electron per metal atom.

