
Java OOPs Concepts

next → ← prev

1. Object-Oriented Programming

2. Advantage of OOPs over Procedure-oriented programming language

3. Difference between Object-oriented and Object-based programming
language.

In this page, we will learn about the basics of OOPs. Object-Oriented
Programming is a paradigm that provides many concepts, such as
inheritance, data binding, polymorphism, etc.

Simula is considered the first object-oriented programming language. The
programming paradigm where everything is represented as an object is
known as a truly object-oriented programming language.

Smalltalk is considered the first truly object-oriented programming
language.

The popular object-oriented languages are Java, C#, PHP, Python, C++, etc.

The main aim of object-oriented programming is to implement real-world
entities, for example, object, classes, abstraction, inheritance,
polymorphism, etc.

OOPs (Object-Oriented Programming System)

Object means a real-world entity such as a pen, chair, table, computer,
watch, etc. Object-Oriented Programming is a methodology or paradigm
to design a program using classes and objects. It simplifies software
development and maintenance by providing some concepts:

Object

Class

https://www.javatpoint.com/java-oops-concepts



Inheritance

Polymorphism

Abstraction

Encapsulation

Apart from these concepts, there are some other terms which are used in
Object-Oriented design:

Coupling

Cohesion

Association

Aggregation

Composition



Object

Any entity that has state and behavior is known as an object. For example, a
chair, pen, table, keyboard, bike, etc. It can be physical or logical.

An Object can be defined as an instance of a class. An object contains an
address and takes up some space in memory. Objects can communicate
without knowing the details of each other's data or code. The only
necessary thing is the type of message accepted and the type of response
returned by the objects.



Example: A dog is an object because it has states like color, name, breed,
etc. as well as behaviors like wagging the tail, barking, eating, etc.

Class

Collection of objects is called class. It is a logical entity.

A class can also be defined as a blueprint from which you can create an
individual object. Class doesn't consume any space.

Inheritance

When one object acquires all the properties and behaviors of a parent object,
it is known as inheritance. It provides code reusability. It is used to achieve
runtime polymorphism.



Polymorphism

If one task is performed in different ways, it is known as polymorphism. For
example: to convince the customer differently, to draw something, for
example, shape, triangle, rectangle, etc.

In Java, we use method overloading and method overriding to achieve
polymorphism.

Another example can be to speak something; for example, a cat speaks
meow, dog barks woof, etc.



Abstraction

Hiding internal details and showing functionality is known as abstraction.
For example phone call, we don't know the internal processing.

In Java, we use abstract class and interface to achieve abstraction.

Encapsulation

Binding (or wrapping) code and data together into a single unit are known as
encapsulation. For example, a capsule, it is wrapped with different



medicines.

A java class is the example of encapsulation. Java bean is the fully
encapsulated class because all the data members are private here.

Coupling

Coupling refers to the knowledge or information or dependency of another
class. It arises when classes are aware of each other. If a class has the
details information of another class, there is strong coupling. In Java, we
use private, protected, and public modifiers to display the visibility level of
a class, method, and field. You can use interfaces for the weaker coupling
because there is no concrete implementation.

Cohesion

Cohesion refers to the level of a component which performs a single well-
defined task. A single well-defined task is done by a highly cohesive
method. The weakly cohesive method will split the task into separate parts.
The java.io package is a highly cohesive package because it has I/O related
classes and interface. However, the java.util package is a weakly cohesive
package because it has unrelated classes and interfaces.

Association

Association represents the relationship between the objects. Here, one
object can be associated with one object or many objects. There can be four
types of association between the objects:

One to One

One to Many

Many to One, and

Many to Many

Let's understand the relationship with real-time examples. For example,
One country can have one prime minister (one to one), and a prime
minister can have many ministers (one to many). Also, many MP's can have



one prime minister (many to one), and many ministers can have many
departments (many to many).

Association can be undirectional or bidirectional.

Aggregation

Aggregation is a way to achieve Association. Aggregation represents the
relationship where one object contains other objects as a part of its state. It
represents the weak relationship between objects. It is also termed as a has-
a relationship in Java. Like, inheritance represents the is-a relationship. It is
another way to reuse objects.

Composition

The composition is also a way to achieve Association. The composition
represents the relationship where one object contains other objects as a
part of its state. There is a strong relationship between the containing
object and the dependent object. It is the state where containing objects do
not have an independent existence. If you delete the parent object, all the
child objects will be deleted automatically.

Advantage of OOPs over Procedure-oriented programming
language

1) OOPs makes development and maintenance easier, whereas, in a
procedure-oriented programming language, it is not easy to manage if code
grows as project size increases.

2) OOPs provides data hiding, whereas, in a procedure-oriented
programming language, global data can be accessed from anywhere.



Figure: Data Representation in Procedure-Oriented Programming

Figure: Data Representation in Object-Oriented Programming

3) OOPs provides the ability to simulate real-world event much more
effectively. We can provide the solution of real word problem if we are



using the Object-Oriented Programming language.

What is the difference between an object-oriented
programming language and object-based programming
language?

Object-based programming language follows all the features of OOPs except
Inheritance. JavaScript and VBScript are examples of object-based
programming languages.

Can we overload the main method?

A Java Constructor returns a value but, what?

Can we create a program without main method?

What are the six ways to use this keyword?

Why is multiple inheritance not supported in Java?

Why use aggregation?

Can we override the static method?

What is the covariant return type?

What are the three usages of Java super keyword?

Why use instance initializer block?

What is the usage of a blank final variable?

What is a marker or tagged interface?

What is runtime polymorphism or dynamic method dispatch?

What is the difference between static and dynamic binding?

How downcasting is possible in Java?

What is the purpose of a private constructor?

What is object cloning?

What will we learn in OOPs Concepts?

Advantage of OOPs



Naming Convention

Object and class

Method overloading

Constructor

static keyword

this keyword with six usage

Inheritance

Aggregation

Method Overriding

Covariant Return Type

super keyword

Instance Initializer block

final keyword

Abstract class

Interface

Runtime Polymorphism

Static and Dynamic Binding

Downcasting with instanceof operator

Package

Access Modifiers

Encapsulation

Object Cloning

Next Topic Naming Convention in Java
← prev next →


