Relationship between Kc, Kp and Kx

Relationship between Kp ,Kc, Kx and Kn

Kp=Equilibrium constant in terms of partial pressure.

Kc=Equilibrium constant in terms of concentration.

Kx=Equilibrium constant in terms of mole fraction.

Kn=Equilibrium constant in terms of number of moles.

Kp and Kc are related as $K_P = K_C (RT)^{\Delta n}$ (eq 1)

Relationship between Kp and Kn

$$K_p = \frac{P_C^c \times P_D^d}{P_A^a \times P_B^b}$$
(eq 2)

From ideal gas equation, PV=nRT

$$=>P=n(RT/V)$$

Where, n is the number of moles

So,
$$P_A = n_A(RT/v)$$
, $P_B = n_B(RT/V)$, $P_C = n_C(RT/V)$ and $P_D = n_D(RT/V)$

Replacing equation 2 by the above value we get that,

= >
$$K_p = K_n$$
 . (RT/V) Δn

= >
$$K_p = K_n \cdot (P_T/n_T)^{\Delta n}$$

Δn=number of gaseous moles of product – number of gaseous moles of reactant

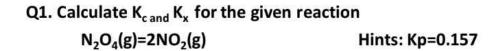
Relation between Kp and Kx

$$K_p = \frac{P_C^c \times P_D^d}{P_A^a \times P_B^b}$$

From above (eq.... 2)

Partial pressure(P) = Mole fraction(x) . Total pressure(P_T)

So,
$$P_{A} = x_{A}$$
, P_{T}


$$P_{B} = x_{B}$$
, P

$$P_{C} = x_{C}$$
, P_{T}

$$P_{D} = x_{D}$$
, P_{T}

Putting the values in whole equation:

Kp=Kc(RT)ⁿ where R is the gas constant, T is the Temperature and n is the change in no. of gaseous moles in the **reaction**.

- Q2. a) What is the difference between homogeneous and heterogeneous equilibria? b) List the examples.
- Q3. Under what conditions are the values of KC and KP for a given gas phase equilibrium the same?
- Q4. What is the relation between KP KC and KX?