### **Chemical Equilibrium**

For B.Sc Chemistry(Part-I) Physical Chemistry Paper-IA Lecture-01

By
Dr. Supriya kumari
Sher Shah College, Sasaram
V.K.S.U,Ara
supriyachemu@gmail.com

### Rate law for elementary reaction

· Law of mass action applies

Rate of reaction  $\alpha$  Product of active masses of reactants

Active mass molar concentration raised to power of number of species

Examples:

A 
$$\longrightarrow$$
 P+Q rate= $K_1[A]$   
A  $\longrightarrow$  P+Q rate= $K_2[A]^1[B]^2$   
2A + B  $\longrightarrow$  E+F+G rate= $K_3[A]^2[B]^1$ 

### Calculation of the equilibrium constant

For the reaction

$$aA + bB = cC + dD$$

The relationship between the value of the equilibrium constant k and the concentrations of reactant and product is given by

$$K_c = \frac{\begin{bmatrix} C \end{bmatrix}^c \begin{bmatrix} D \end{bmatrix}^d}{\begin{bmatrix} A \end{bmatrix}^a \begin{bmatrix} B \end{bmatrix}^b}$$
  $K_c$  is fixed value for a particular rxn at Sp.Temp.

The equilibrium  $NO_2$  Conc. is  $\times M$  and  $N_2O_4$  is y M:

Calculation of the equilibrium constant

$$K = \begin{bmatrix} N_2O_4 \\ NO_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}^2$$

Note: K is unitless and only temperature changes the value of K<sub>c</sub>

K is measured from the ratio of products to reactants at equilibrium on

# Homogeneous equilibrium & Heterogeneous equilibrium

K = Reactants at equilibrium/Products at equilibrium

## Homogeneous equilibrium

- substances are in the same phase
- Rxn involving only gases or solution

## Heterogeneous equilibrium

- substances are in different phases
- Rxn involving only(s,l, g,aq) of matter.

#### Homogeneous equilibria:

Ex: 
$$N_2O_{4(g)}$$
 2  $N_2O_{(g)}$  =0.212at 100 °c

$$K = \begin{bmatrix} N_2 O_4 \\ NO_2 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}^2$$

Ex: 
$$CaCO_{3(s)}$$
  $CaO_{(s)}+CO_{2(g)}$  at  $500^{0}c$ 

Heterogeneous equilibrium 
$$K_{c/eq} = (CO_2)$$

$$K_p = PCO_2$$