# **Chemical Equilibrium**

For B.Sc Chemistry(Part-I) Physical Chemistry Paper-IA Lecture-01

By
Dr. Supriya kumari
Sher Shah College, Sasaram
V.K.S.U,Ara
supriyachemu@gmail.com

# Law of Mass action

- Law state that the rate of any chemical reaction is proportional to the product
  of the masses of the reacting substances, with each mass raised to a power equal
  to the coefficient that occurs in the chemical equation
- The rate of the chemical reaction is directly proportional to the product of the activities or concentrations of the reactants.
- It explains and predicts behaviors of solutions in dynamic equilibrium.
- A chemical reaction mixture that is in equilibrium, the ratio between the concentration of reactants and products is constant in a reaction equilibrium mixture.

Two aspects are involved in the initial formulation of the law:



Equilibrium aspect ,composition of a rxn mix. at equilibrium

Kinetic aspect, concerning the rate equations for elementary reactions

### Kinetic derivation for law of mass action

#### Rate law:

It is an equation that shows the dependence of the reaction rate on the concentration of each reactant.

rate 
$$\alpha[A]^m[B]^n$$
  
rate =  $k[A]^m[B]^n$ 

where k is the rate constant

## Rate law for elementary reaction

· Law of mass action applies

Rate of reaction  $\alpha$  Product of active masses of reactants

Active mass molar concentration raised to power of number of species

Examples:

A 
$$\longrightarrow$$
 P+Q rate= $K_1[A]$   
A  $\longrightarrow$  P+Q rate= $K_2[A]^1[B]^2$   
2A + B  $\longrightarrow$  E+F+G rate= $K_3[A]^2[B]^1$