
Disk allocation method:-There are three widely used allocation techniques Contiguous, Linked and

indexed. The last two techniques are belong to non contiguous allocation.

1. Contiguous allocation:- In contiguous allocation files are assigned to contiguous areas of secondary

storage. In this technique a user specifies in advance the size of the area needed to hold a file to be

created. If the desired amount of contiguous space is not available the file cannot be created.

Advantage of contiguous allocation is that all successive records of a file are normally physically

adjacent to each other. This increase the accessing speed of records.

2. Linked allocation :- In linked list allocation each file is linked list of disk blocks. This disk blocks

may be scattered through the disc. A few bites of each disc block contains the address of the next block.

The directory contains of pointer to the first and last blocks of the file.

Advantage of linked allocation is:

1. Simplicity

2. No disc compaction required:- Due to non contiguous nature of allocation, the linking does not

produce any external disk fragmentation.

Disadvantage of linked allocation

1. Slow direct accessing of any disk block.

2. Extra space requirement for pointers.

3. Not reliable since disk blocks are linked by pointer a single damaged pointer can make thousands

of disk blocks inaccessible.

Indexed Allocation:- In indexed allocation scheme each file is provided with its own index block, which

is an array of disk blocks pointers (addresses).

1. CONTIGUOUS ALLOCATION OF FILE

2. Linked Allocation

1. Indexed Allocation

Disk scheduling

First come first served (FCFS) scheduling :-

This is the simplest form of scheduling in which the first request to arrive is the first one

serviced FCFS scheduling has a fair policy in the sense that once a request has arrived, its

place in the scheduling is fixed in the respective of arrival of a higher priority request. It may

not provide the best service but it is easy to program. For example consider the following disk

queue with request involve in track to record

100, 200, 50, 150, 25, 155, 70 and 85

The starting track to read is 100 and the last one is 85.

If the head position of a disk system is initially at 50, it will first move from 50 to 100 then to 200,

50, 150, 25, 155, 70 and 85 for a total head movement of 755 ((100 – 50) + (200 – 100) + (200 – 50)

+ (150 – 50) + (150 – 25) + (155 – 25) + (155 – 70) + (85 – 70)) tracks. The movement of a head for

the track is illustrated in the following figure.

Drawback which this scheduling approach is a big swing as seen in the above figure from 150 - 25

and back to 155 FCFS is acceptable when the load on a disc is light

2. Shortest Seek Time First(SSTF) Scheduling:- In shortest seek time first scheduling priority is

given to those processes which need the shortest seek, even if these requests are not the first one

in the queue. It means that all requests nearer to the current head position are serviced together

before moving head to distant tracks. Since Sick time is generally proportional to the track

difference between the request, this approach is implemented by moving the head to the closest

track in the request queue.

For example consider the previous example of request queue of 100, 200, 50, 150, 25,

155, 70 and 85 tracks, the nearest track for a service from an initial head position 50 is at

track 70 once we are at 70 the next closest track is 85 (the difference is of 15 tracks only). From

here it can go to 100 . Continuing this way the request for tracks 155 is serviced next and then

switchover to 200 and finally at 25.

Movement of disk head:-

50 →70 → 85 → 100 →150 → 155 → 200 → 25

Thus using SSTF total head movement is 325((70-50) + (85-70) + (100-85) + (150-100) + (155-150)

+ (200-155) + (200-25)), which is less than a half of distance required for FCFS, with substantial

improvement I disk throughput.

3. Scan scheduling:- In a scan scheduling the read or write ahead of the disc starts from one end

moves towards the other end, services requests as it reaches each track until it reaches to another

end of the disk. After reaching and other end of the disc, disk head reverses its path direction

while continuing with services whichever comes on the way. This way disk head continuously

oscillates from end to end. This is scheduling works with dynamic nature of request queue.

For example:- Suppose a disk head is moving from 0 and its last position was 45, then for

the previous example 100, 200, 501 502 5155, 70 and 85 it would service 5070 85, 100 15015 5200

as it moves in that direction. If any request come on its way it will be serviced immediately while

request arriving just behind the head will have to wait until disk head moves to the end of the

disc, reverse is direction and returns before being serviced.

Paging:- Paging is a memory management technique that permits programs memory to be non-

contiguous into physical memory thus allowing a program to be allocated physical memory wherever it

is possible.

Address mapping in a paging system:- In this mechanism physical memory is conceptually divided

into a number of fixed size blocks called frames (or page frames).The virtual address space or logical

memory of a process is also broken into blocks of the same size called pages. When a program is to be

run and its pages are loaded into any frame from the disc.

An important component of paging operation is a page map table(PMT), which contains

starting address or base address of each page stored on physical memory

As shown in the figure, every address generated by CPU contains two components virtual (or

logical) page number and a page offset into that page. The page number works as an index into the

page map table. To define a physical memory address the base address in PMT is added with offset and

sent to physical memory unit.

Segmentation:-

Segmentation is a memory management scheme which support programer’s view of memory.

Programmers never think of their program as a linear array of words rather they think of their programs

as a collection of logically related entities, such as subroutines or procedures, functions, global or local

data areas stack etc.

Segments are formed at program translation time by grouping together logically related entities.

Formation of the segment vary one compiler to another.

Address mapping in segmented system:-

An important component of address mapping in a segmented system is a segment table. Its use is

illustrated in the following figure.

CPU

Physical

Memory

Base

Address

Virtual

Page No.

Offset
Base

Address

Offset

A virtual (logical) address consists of two parts a segment number and an offset into the segment. The

segment number provided in the virtual address is used as an index into the segment table. Each row the

of the segment table contains a starting address (base address) of segment and a size of the segment. The

address of virtual address must be within (less than or equal to) the size of the segment. If the offset of

virtual address is not within the range it is trapped by the operating system otherwise the offset is added

to the base address of the segment to provide physical address of the desired segment. Example

considered the given figure there are 5 segments numbered from 0 to 4. The segment table has separate

entry for each segment having the starting address (base address) of segment in physical memory and the

size of that segment.

Demand Paging: In demand paging pages are loaded only on demand, not in advance. It is similar to

paging system with swapping feature. Rather than swapping the entire program in memory only those

pages are swapped which are required currently by the system.

To implement demand paging, it is necessary for the operating system to keep track of which

pages are currently in use. The page map table contains an entry bit for each virtual page of the related

process. For each page actual swept in memory, page map table points to actual location that contains

the corresponding page frame and entry bit is set and marked as YES if it is in memory. Alternatively

the entry bit is reset and marked as NO if a particular page is not in memory. If a program during

execution never accesses those pages which are marked as NO, there will be no problem and execution

proceeds normally. But if the program tries to access a page that was not swapped in memory page fault

trap occurs.

Page Fault:- A page fault is a result of the operating systems failure to bring a valid part of the program

into memory in an attempt to minimise swiping overhead and physical memory requirement. When the

running program experiences a page fault, it must be suspended until the missing page is swapped in

main memory. Here is a list of steps operating system follows in handling a page fault.

1. If a process refers to a page which is not in physical memory, then an internal table kept with a

process control block is checked to verify whether a memory reference to a page was valid or

invalid.

2. If memory reference to a page was valid, but the page is missing, the process of bringing a page

into the physical memory starts.

3. Free memory location is identified to bring a missing.

4. By reading a disc, the desired page is brought back into the free memory location.

5. Once the page is in the physical memory. The internal table kept with the process and map table

is updated to indicate that the page is now in memory.

6. Restarts the instruction that was interrupted due to the missing page.

