1BCA4
Deadlock:- A deadlock 1is a situation where a group of processes is

permanently blocked as a result of each process having acquired a set of
resources needed for its completion and having to wait for release of the
remaining resources held by other, thus making it impossible for any of the
deadlocked processes to proceed. For example, take system with one tape
drive and one plotter. Process Pl request tape drive and process P2 requests
the plotter. Both requests are granted. Now Pl requests the plotter
(without giving up the tape drive) and P2 request the tape drive (without
giving up the plotter). Neither request can be granted so both processes
enter deadlock situation.

Necessary Condition of Deadlock: -

Following are the necessary condition for deadlock:

1. Mutual Exclusion: - The shared resources are acquired and used in a
mutually exclusive manner, that is by at most one process at a time.

2. Hold and wait: - Each process continues to hold resources already
allocated to it while waiting to acquire other resources.

3. No preemption: - Resources granted to a process can be released back
to the system only as a result of the voluntary action of that process,
the system cannot forcefully revoke them.

4. Circular waiting: - Deadlock process are involved in a circular chain
such that each process holds one or more resources being requested by
the next process in the chain.

The simultaneous existence of these conditions defines the state
of deadlock. 1In other words, all four conditions must be present
for a deadlock occur. Thus, by requiring all processes to request
and acquire their resource in a strictly increasing order of the
specified system resources classes.
Deadlock Avoidance: - The basic idea of deadlock avoidance is to grant only
those requests for available resources that can not possibly result in a
state of deadlock. This strategy 1is usually 1implemented by having the
resources allocator examine the effects of granting a particular. If
granting of the resource can not possibly lead to deadlock, the resource is
granted to the requestor. Otherwise the requesting process is suspended

until such time when its pending request can be safely granted. This is

Deepak Kumar,



1BCA4
usually after one or more resources held by other active processes are

released.

In order to evaluate the safety of the 1individual system states,
deadlock avoidance requires all process to state [proclaim] their maximum
resource requirements prior to execution.

The resource allocator keeps track of the number of allocated and the
number of available resources of each type in addition to recording the
remaining number of resources pre-claimed but not yet requested by each
process.

Deadlock Detection and Recovery:-

Deadlock detection I sonly a part of the deadlock-handling task. Detecting
a deadlock only reveals the existence of the problem, the system must then
break the deadlock and to ensure that the affected processes can eventually
be completed. The first step in deadlock recovery is to identify the
deadlocked processes. This gives an edge to detection algorithms that
provide an indentation of deadlocked process. The algorithm operates as
follows:

1. Form ALLOCATED, REQUESTED and ALLOCATED 1in accordance with the system

state. Unmark all active processes.

2. Find an unmarked process ‘i' such that

REQUESTED' <= AVAILABLE

If found, mark process i, update AVAILABLE
AVAILABLE:=AVAILABLE + ALLOCATED

and repeat this step. When no qualifying process can be
found. Proceed to next step.

3. If all process 1is marked, the system 1is not deadlocked. Otherwise

the system is deadlocked.

Deepak Kumar,



1BCA4

R1

Request

R1 R2 R1 R2 R1 R2
P1 1 1 P1 o) 1 I o] 0
P2 o 1 P2 1 (o}
Allocated Requested Available

The next step is to break the deadlock by rolling back or restarting one or
more of the deadlocked processes. Restarting a process implies the loss of
the work completed by the process prior to it becoming deadlocked. Since
presumably not all processes have progressed equally for, it is desirable
to choose the victims among processes whose restarting is les costly. Rolling
back a process requires a facility for recording the runtime states of
processes, so that a process can be returned to a point sufficiently deep
in the past that the deadlock 1is broken.

Deadlock detection and recovery provides a higher potential degree of

concurrency than deadlock prevention and avoidance.

Deepak Kumar,



