
1BCA4

Deepak Kumar,

Deadlock:- A deadlock is a situation where a group of processes is

permanently blocked as a result of each process having acquired a set of

resources needed for its completion and having to wait for release of the

remaining resources held by other, thus making it impossible for any of the

deadlocked processes to proceed. For example, take system with one tape

drive and one plotter. Process P1 request tape drive and process P2 requests

the plotter. Both requests are granted. Now P1 requests the plotter

(without giving up the tape drive) and P2 request the tape drive (without

giving up the plotter). Neither request can be granted so both processes

enter deadlock situation.

Necessary Condition of Deadlock: -

Following are the necessary condition for deadlock:

1. Mutual Exclusion: - The shared resources are acquired and used in a

mutually exclusive manner, that is by at most one process at a time.

2. Hold and wait: - Each process continues to hold resources already

allocated to it while waiting to acquire other resources.

3. No preemption: - Resources granted to a process can be released back

to the system only as a result of the voluntary action of that process,

the system cannot forcefully revoke them.

4. Circular waiting: - Deadlock process are involved in a circular chain

such that each process holds one or more resources being requested by

the next process in the chain.

The simultaneous existence of these conditions defines the state

of deadlock. In other words, all four conditions must be present

for a deadlock occur. Thus, by requiring all processes to request

and acquire their resource in a strictly increasing order of the

specified system resources classes.

Deadlock Avoidance: - The basic idea of deadlock avoidance is to grant only

those requests for available resources that can not possibly result in a

state of deadlock. This strategy is usually implemented by having the

resources allocator examine the effects of granting a particular. If

granting of the resource can not possibly lead to deadlock, the resource is

granted to the requestor. Otherwise the requesting process is suspended

until such time when its pending request can be safely granted. This is

1BCA4

Deepak Kumar,

usually after one or more resources held by other active processes are

released.

 In order to evaluate the safety of the individual system states,

deadlock avoidance requires all process to state [proclaim] their maximum

resource requirements prior to execution.

The resource allocator keeps track of the number of allocated and the

number of available resources of each type in addition to recording the

remaining number of resources pre-claimed but not yet requested by each

process.

Deadlock Detection and Recovery:-

Deadlock detection I sonly a part of the deadlock-handling task. Detecting

a deadlock only reveals the existence of the problem, the system must then

break the deadlock and to ensure that the affected processes can eventually

be completed. The first step in deadlock recovery is to identify the

deadlocked processes. This gives an edge to detection algorithms that

provide an indentation of deadlocked process. The algorithm operates as

follows:

1. Form ALLOCATED, REQUESTED and ALLOCATED in accordance with the system

state. Unmark all active processes.

2. Find an unmarked process ‘i' such that

REQUESTED
i

 <= AVAILABLE

If found, mark process i, update AVAILABLE

AVAILABLE:=AVAILABLE + ALLOCATED

and repeat this step. When no qualifying process can be

found. Proceed to next step.

3. If all process is marked, the system is not deadlocked. Otherwise

the system is deadlocked.

1BCA4

Deepak Kumar,

The next step is to break the deadlock by rolling back or restarting one or

more of the deadlocked processes. Restarting a process implies the loss of

the work completed by the process prior to it becoming deadlocked. Since

presumably not all processes have progressed equally for, it is desirable

to choose the victims among processes whose restarting is les costly. Rolling

back a process requires a facility for recording the runtime states of

processes, so that a process can be returned to a point sufficiently deep

in the past that the deadlock is broken.

 Deadlock detection and recovery provides a higher potential degree of

concurrency than deadlock prevention and avoidance.

